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Abstract

We study online auctions, where two sellers sequentially chooseers2



Sealed-bid auctions were prevalent before the advent of the Internet, but have lost

their popularity due to a drastic improvement in the communication technologies and

reduction of search costs for buyers.

One of the important attributes of e-commerce is the ease of trading. Previously,

companies had to incur �xed costs to set up at least one distribution channel. Reselling

those items after the purchase was also problematic due to high search and coordination

costs. These days, any individual may almost costlessly bring a product to an online

consumer-to-consumer (C-2-C) market, whether for the purposes of resale or as a

uniquely crafted item. The latter tendency produces a distinctive environment in which



low enough to safeguard against being undercut by the second seller, and in equilibrium

the �rst-arriving seller makes more pro�t than the second-arriving seller. In addition to

characterizing an equilibrium in the above environment, this note has a methodological

contribution. We show how the approach of Myerson (1981) can be extended to a case

with two sellers receiving some split of the expected revenue generated from the buyers.

Peters and Severinov (2006) prove that when there are many sellers and buyers in

online-auction markets, the reserve prices set by the sellers are equal to their marginal

costs. In contrast to sealed-bid auctions characterized by simultaneous choice of reserve

prices, it is unlikely that in online markets sellers choose reserve prices simultaneously.

Rather, a seller who comes to the market �rst, chooses a reserve price expecting a

subsequent arrival of another seller. In principle, sellers may have a good estimate of

how many competitors to anticipate. Such a strategic environment may be framed as a

Stackelberg-like model where sellers choose reserve prices, and our results are consistent

with the standard symmetric Stackelberg model, in which the �rst-moving seller has an

advantage and earns a higher pro�t.

Our note is related to Burguet and SÆkovics (1999), who show that the results

of McAfee (1993) and Peters and Severinov (1997) hold only for large markets where

many sellers o�er sealed-bid auctions. The crucial feature of the environment considered

by this literature is the commitment of buyers, who could no longer switch to another

auction after placing a bid in one of them. Burguet and SÆkovics (1999) argue that in a

duopoly the reserve prices are no longer driven to marginal costs. The authors consider

simultaneous choice of reserve prices by the sellers and �nd that the equilibrium exists

only in mixed strategies. When the choice of reserve prices is sequential (which re�ects

the observed regularities of online markets), we show that there is a unique equilibrium

outcome. Due to di�erences in the behavior of buyers faced with either sealed-bid or

ascending auctions, Burguet and SÆkovics (1999) could not use the marginal revenue

approach (Myerson (1981), Bulow and Roberts (1989), Bulow and Klemperer (1994)),

which is applicable in our analysis and allows us to tremendously simplify calculations

further generalize our results to any selling mechanisms in which only the highest valued

buyers are awarded units.

We show that just like in the environment considered by Burguet and SÆkovics

(1999), competition between two sellers competing in online auctions is not enough to
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drive reserve prices to marginal costs. To our knowledge, there is no empirical literature

examining the structure of reserve prices in online auction markets. Our theory predicts

variation to exist even with two sellers. This contrasts with a monopolist who sells

items by auctions at the same optimal reserve price and a competitive market in which

reserve prices are equal to marginal costs. The monopolist outcome may also arise if

competing duopolists were to collude. Hence, the absence of variation in the reserve

prices on particular segments of C-2-C markets could potentially be used as a test for

collusion.

In the next section we describe the model. In section 3 we describe the sellers’

pro�ts directly and then adapt the revenue equivalence theorem to rewrite the sellers’

pro�ts. In section 4 we describe the equilibrium. Section 5 provides an example with

three buyers with uniformly distributed values and shows how the reserve price of the

�rst-moving seller is just high enough to discourage the second-arriving seller from

undercutting. We conclude in section 6 by considering online auctions (in which buyers

can bid simultaneously in both auctions), but in which the sellers choose reserve prices

simultaneously to better understand the role of sequentially chosen reserve prices.

2 The model

There are two sellers with identical costs (normalized to zero) �a and b � each

possessing a single unit. There aren buyers, each demanding a single unit. The values of

the buyers are i.i.d, drawn from distributionF (�) with support [0; v]; F (�) is di�erentiable

with everywhere positive densityf (�). Let the vector of valuations bev = ( v1; v2; : : : ; vn )

and the vector of sorted values bex = ( x1; x2; : : : ; xn ) with x1 � x2 � : : : � xn . In other

words, the elements ofx are order statistics. Let f k(x) denote the marginal density

function of the kth highest order statistic and let f (n)
1:k (x1; x2



selects reserve pricerb. Each buyer submits a sealed bid. The allocation is according

to the seller-o�er double auction, which works as follows. Make a single list, sorting the

reserve prices and bids from highest to lowest, with ties ordered randomly. Set price

P equal to the reserve price or bid in thenth lowest position on this list. All sellers

amongst thenth lowest positions will sell a unit and receiveP dollars; all buyers with

values in the remaining 2 �highest� positions will purchase a unit and payP dollars.

The remaining sellers and buyers do not transact. This means that the price paid by



3 Sellers’ pro�ts

In the seller-o�er double auction or in decentralized ascending price auctions,

only the buyers with the highest valuations win units, as described in the prior section.

We next give seller pro�t functions based on whether the seller has the lower or higher

reserve price. Name the reserve prices such thatr2 � r1. We �rst treat the case when

r2 > r 1. The seller with reserve pricer2 sells a unit at pricer2 if x1 � x2 � r2 > x 3 and

at price x3 if x1 � x2 � x3 � r2 for expected pro�t of:

� 2(r2) =
Z x3= r 2

x3=0

Z x2= v

x2= r 2

Z x1= v

x1= x2

r2f (n)
1:3 (x1; x2; x3)dx1dx2dx3 +

Z x3= v

x3= r 2

Z x2= v

x2= x3

Z x1= v

x1= x2

x3f (n)
1:3 (x1; x2; x3)dx1dx2dx3:

(1)

The seller with reserve pricer1 sells a unit at pricer2 if x1 � x2 � r2 > x 3 and at price

x3 if x1 � x2 � x3 � r2 as before, and also at pricer1 if x1 � r1 > x 2 and at price x2 if

r2 � x2 � r1 for the expected pro�t of:

� 1(r1; r2) = � 2(r2) +
Z x2= r 1

x2=0

Z x1= v

x1= r 1

r1f (n)
1:2 (x1; x2)dx1dx2 +

Z x2= r 2

x2= r 1

Z x1= v

x1= x2

x2f (n)
1:2 (x1; x2)dx1dx2:

(2)

Despite the particulars of the payments, the revenue equivalence theorem

(Myerson (1981), Riley and Samuelson (1981), Krishna (2009)) indicates that what

matters is the allocation of units: in a single-unit demand independent private values

setting (as in our model), in any incentive compatible mechanism in which a buyer

with value 0 gets an expected payo� of 0, the expected revenue equals the expected

marginal revenue of the buyers awarded units, where marginal revenue is de�ned as

MR (z) := z � 1� F (z)
f (z) . We may thus express the pro�t functions as summarized in the

following proposition.
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Proposition 1. An equivalent way to express the pro�t functions is:

� 2(r2) =
1
2

Z x2= v

x2= r 2

Z x1= v

x1= x2

�
MR (x1) + MR (x2)

�
f (



Assumption 1. The marginal revenue functionMR (z) := z � 1� F (z)
f (z) is regular:

that is, it is continuous and strictly increasing.

We will also make use of the following quick result introduced in Bulow and

Roberts (1989), which can be shown using integration by parts:

Lemma 1. For all p with 0 � p � v, we have:

Z v

p
MR (z)f (z)dz = p[1 � F (p)]:

The next three lemmas establish important properties of the pro�t functions.

Lemma 2. For all (r1; r2) with 0 < r 1 � r2 < v, we have:

� 1(r1; r2) > � 2(r2):

Proof. This follows immediately from equations (1) and (2).

Lemma 3. For all r with 0 < r < v, we have:

� 1(r; r ) > � 0(r ):

Proof. By Lemma 2, � 1(r; r ) > � 2(r ). By de�nition, � 0 is a convex combination

of � 1(r; r ) and � 2(r ) and thus lies somewhere in between:� 1(r; r ) > � 0(r ) > � 2(r ).

Lemma 4. The function � 2(�) de�ned on [0; v] is single-peaked, and reaches

its peak at r �
2 :=  � 1(0), where  (r2) := r2 + MR (r2). Each function in the family

f � 1(�; r2)gr 22 [0;v], with � 1(�; r2) de�ned on [0; r2], is single-peaked and reaches its peak at

min f r �
1; r2g, where r �

1 := MR � 1(0).

Proof. Use Proposition 1 to get:

d� 2(r2)
dr2

= �
1
2

Z x1= v

x1= r 2

�
MR (x1) + MR (r2)

�
n(n � 1)f (x1)f (r2)F n � 2(r2)dx1

= �
1
2

n(n � 1)f (r2)F n � 2(r2)
�
(1 � F (r2))r2 + MR (r2)(1 � F (r2))

�

= �
1
2

n(n � 1)f (r2)F n � 2(r2)(1 � F (r2))
| {z }

f 2 (r 2 ) � 0

(r2 + MR (r2))

where Lemma 1 gives the second equality. This derivative equals0 when r2 is 0 or v,
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but otherwise takes sign opposite of (r2) := r2 + MR (r2). Because (0) < 0 <  (v)

and  (r2) is continuous and strictly increasing by Assumption 1 (regularity), there is

a unique value ofr2 in the interior of [0; v] with  (r2) = 0 : r �
2 =  � 1(0). Thus, in

the interior of [0; v], d� 2(r2)=dr2 begins positive, equals zero atr �
2, and turns negative,

thereby giving the single-peakedness of� 2(r2).

Next, use Proposition 1 to get:

@�1(r1; r2)
@r1

= �
Z x2= r 1

x2=0
MR (r1)n(n � 1)f (r1)f (x2)F n � 2(x2)dx2

= � MR (r1)nf (r1)
Z x2= r 1

x2=0
(n � 1)f (x2)F n � 2(x2)dx2

= � nf (r1)F n � 1(r1)
| {z }

f 1 (r 1 ) � 0

MR (r1):

A similar argument to the prior paragraph gives the single-peakedness of� 1(r1; r2) at

r �
1 = MR � 1(0) wheneverr �

1 � r2 and otherwise atr2, noting that � 1(�; r2) is only de�ned

on [0; r2].

Lemma 5. The following ranking holds:0 < r �
2 < r �

1.

Proof. The function  (r2) = r2 + MR (r2) is strictly increasing and continuous

by Assumption 1. By de�nition, MR (r �
1) = 0 and  (r �

2) = 0 . The result follows from

 (0) = MR (0) = � 1=f (0) < 0 and  (r �
1) = r �

1 + MR (r �
1) = r �

1 >





price ra. We examine the best response of sellerb. If ra = v, sellerb has a unique best

response to pricer �
1, using Lemma 4 and noting that choosing reserve pricev results in

zero pro�t. If ra = 0 , observe that

� 0(0) =
1
2

� 1(0; 0) +
1
2

� 2(0) = � 2(0) < � 2(r �
2)

where the inequality is from Lemma 4. Thus, choosing reserve pricer �
2 is better than

matching with a reserve price of 0, and is therefore the unique best response. For the

remaining cases ofra, we may appeal to Lemma 3 to note that matching this reserve

price is never a best response for sellerb. From Lemma 4 it follows that sellerb does

best whenever he chooses a lower reserve price to get as close as possible tor �
1 and does

best whenever he chooses a higher reserve price to get as close as possible tor �
2.

Case 1: r �
1 < r a < v. Sellerb



Proposition 3 shows that reserve prices are not driven down to the sellers'

marginal costs, resulting in ine�ciency. In addition, seller a who moves �rst sets a

lower price and earns a higher pro�t than sellerb since � 1(r 1; r �
2) > � 2(r �

2) by Lemma

2. As a remark, it follows from the aforementioned revenue equivalence theorem that

if sellers were to collude to maximize their joint pro�ts, they would set both reserve

prices at MR � 1(0) = r �
1 > r �

2. Thus, in a non-cooperative game with sellers moving

sequentially, the equilibrium results in more social surplus (including the buyers) than

in a monopolized or cartelized market.

5 Numerical example

Suppose that there aren = 3 buyers, with values distributed (uniformly) on[0; 1].

Then, F (v) = v, f (v) = 1 , and marginal revenue isMR (z) = 2 z � 1. Using Proposition

1, the pro�t functions for sellers with the higher and lower reserve prices are:

� 2(r2) =
1
2

Z x2=1

x2= r 2

Z x1=1

x1= x2

(2x1 � 1 + 2x2 � 1)6x2dx1dx2 =
9
4

r 4
2 � 4r 3

2 +
3
2

r 2
2 +

1
4

and

� 1(r1; r2) = � 2(r2) +
Z x2= r 1

x2=0

Z x1=1

x1= r 1

(2x1 � 1)6x2dx1dx2 +

Z x2= r 2

x2= r 1

Z x1=1

x1= x2

(2x1 � 1)6x2dx1dx2 = �
3
2

r 4
1 + r 3

1 +
3
4

r 4
2 � 2r 3

2 +
3
2

r 2
2 +

1
4

noting that the joint density of the two highest order statistics isf (3)
1:2 = 6x2.

We obtain r �
2 = 1=3 � 0:333 by solving r2 + MR (r2) = 0 or r2 + 2r



6 Conclusion

In this note we analyzed imperfect competition in online markets where two

sellers enter the market sequentially and list their items by ascending auctions. We

showed that the equilibrium outcome is unique with the �rst-arriving seller setting a

low reserve price, and the second seller setting a higher reserve price. The �rst-moving

seller receives larger expected pro�t, which is consistent with the �rst-mover advantage

of the Stackelberg model. The equilibrium outcome is ine�cient, because both reserve

prices are set higher than the sellers' marginal costs.

Two more factors drive the results. The �rst one is the ability of buyers to switch

costlessly between auctions, which is a likely feature of online markets. In the extreme

case, buyers may procure bots scanning for desired goods across di�erent digital auction

platforms and bidding on their behalf. This behavior leads to well-structured pro�t

functions for the sellers. The second factor is that sellers have identical costs. Many

sellers in online consumer-to-consumer markets are reselling previously bought items, so

one would not expect signi�cant variability in the costs of sellers.

To conclude, we brie�y consider the case of online auctions but where the two

sellers simultaneously choose their prices. This case di�ers only from Burguet and

Sákovics (1999) in the assumption that buyers can freely buy from either seller rather

than commit to one seller's auction or the other's. It is straightforward to show using

our pro�t functions (and similar to our proof of Lemma 2) that no pure strategy Nash

equilibrium exists. Furthermore, it can be shown that the support of any mixed strategy

equilibrium must be identical but cannot include zero, the same result as Burguet and

Sákovics (1999) obtain when buyers commit to one auction or the other. Further, using

a standard argument, the support of prices that a seller mixes over in any mixed strategy

equilibrium must not contain any gaps or atoms. It can be shown that the supremum of

the support of each seller's mixed strategy equalsr �
2 � the price the second-moving seller

chooses in the equilibrium in the version of the game when sellers choose reserve prices

sequentially. If it were lower, then any seller pricing near enough this supremum would

be the high priced seller with probability near enough one that it 662(Man)27(y0t81(that)-3952i7ei68(cannot)-349(include)-3428(an)27t)-326(are)-327(set)-3r�2



close to) � 2(r �
2)
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